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We formulate the head-to-head matchups between Major League Baseball pitchers and batters
from 1954 to 2008 as a bipartite network of mutually-antagonistic interactions. We consider both
the full network and single-season networks, which exhibit structural changes over time. We find
interesting structure in the networks and examine their sensitivity to baseball’s rule changes. We
then study a biased random walk on the matchup networks as a simple and transparent way to
(1) compare the performance of players who competed under different conditions and (2) include
information about which particular players a given player has faced. We find that a player’s position
in the network does not correlate with his placement in the random walker ranking. However,
network position does have a substantial effect on the robustness of ranking placement to changes
in head-to-head matchups.
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I. INTRODUCTION

The study of networks has experienced enormous
growth in recent years, providing foundational insights
into numerous complex systems ranging from protein in-
teraction networks in biology to online friendship net-
works in the social sciences [1–3]. Research on ecolog-
ical and organizational networks has provided a gen-
eral framework to study the mechanisms that mediate
the cooperation and competition dynamics between in-
dividuals [4–9]. In such networks, competitive inter-
actions result from the indirect competition between
members of different populations who either compete
for the same resources or are linked through consumer–
resource relationships. However, data on mutually-
antagonistic interactions—which occur between individ-
uals who directly fight or compete against each other—
have been more difficult to collect [10, 11]. Mutually-
antagonistic interactions also occur frequently in differ-
ent social contexts, such as sports. In the present pa-
per, we consider head-to-head matchups between Ma-
jor League Baseball (MLB) pitchers and batters: Pitch-
ers benefit by “defeating” batters and vice versa. Us-
ing data from retrosheet.org [42], we characterize the
more than eight million MLB plate appearances from
1954 to 2008. We consider full careers by examining
head-to-head matchups over a multi-season (“career”)
network and single-season performances by constructing

∗Electronic address: s-saavedra@northwestern.edu

networks for individual seasons.

Major League Baseball uses votes by professional jour-
nalists to recognize career achievement of players through
induction into a Hall of Fame (HOF) and single-season
performance through awards such as Most Valuable
Player (MVP) and Cy Young (for pitching performance)
[12]. Although the HOF purports to recognize the best
players of all time, the selection of players to it is widely
criticized by fans and pundits each year because of the
lack of consistency when, e.g., comparing players from
different eras, who play under fundamentally different
conditions—in different ballparks, facing different play-
ers, etc. [13, 14]. Such arguments come to the fore when
attempting to draw comparisons between players elected
to the HOF and others who did not make it. For in-
stance, how can one tell whether Jim Rice (elected to
the HOF in 2009) had a better career than Albert Belle
(who dropped off the ballot because of low vote totals
after only two years [43])? Does Bert Blyleven, who ap-
peared on 62.7% of the HOF ballots in 2009—short of the
75% required for election—belong in the HOF? Is Sandy
Koufax, who played from 1955–1966 and is in the HOF,
better than Pedro Martinez (an active player), who will
presumably eventually be elected to the HOF? To ad-
dress such questions, it is insufficient to rely purely on
raw statistics; one must also consider quantitative mech-
anisms for comparison between athletes who played un-
der different conditions. We take a first, simple step in
this direction through the study of biased random walk-
ers [15, 16] on baseball networks. This allows us not only
to construct a quantitative, systematic, and transparent
ranking methodology across different eras but also to in-C
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vestigate the interplay between these dynamics and the
underlying graph structure and to reveal key properties
of mutually-antagonistic interactions that can potentially
also be applied in other settings.

While “water-cooler” discussions about which players
should and should not be enshrined in the HOF (and,
more generally, how to rank players) can often be fasci-
nating, as indicated by the above paragraph, the primary
goal of our paper is to investigate interesting features of
the baseball networks and the impact that network struc-
ture can have on rankings. It is necessary to include some
example rank orderings to have a proper context for such
a discussion, but it is important to note that the rank-
ings we show in the present paper must be taken with
several grains of salt because our efforts at simplicity,
which are crucial to highlighting the interplay between
network structure and player rankings, require us to ig-
nore essential contributing factors (some of which we will
briefly discuss) that are necessary for any serious ranking
of baseball players.

The rest of this paper is organized as follows. In
Section II, we define and characterize the mutually-
antagonstic baseball networks and study the time evo-
lution of various graph properties. In Section III, we
provide a description of the biased random walker dy-
namics that we employ as a ranking methodology across
eras and for single-season networks. In Section IV, we
study the interplay between the random walker dynamics
and graph structure, paying special attention to the sen-
sitivity of the player rankings. In Section V, we conclude
the paper and discuss a number of potential applications
of our work. We explain additional technical details in
two appendices.

II. NETWORK CHARACTERIZATION AND
EVOLUTION

We analyze baseball’s mutually-antagonistic ecology
by considering bipartite (two-mode) networks of head-to-
head matchups between pitchers and batters. As shown
in Fig. 1, bipartite networks are formed using two dis-
joint sets of vertices, P (pitchers) and B (batters), and
the requirement that every edge connect a vertex in P to
one in B [8, 17, 18]. (Note that we track the pitching and
batting performances of pitchers as two separate nodes.)
We consider such interactions in terms of three different
bipartite representations (with corresponding matrices):
(1) The binary matchups A in which the element Aij

equals 1 if pitcher i faced batter j at any point and 0
otherwise; (2) the weighted matchups W in which the
element Wij equals the number of times that i faced
j; and (3) the weighted outcomes M in which the ele-
ment Mij equals a “score” or performance index, which
in the case of pitcher–batter matchups is determined us-
ing what are known in baseball as “sabermetric” statis-
tics (see Section III) [13, 14, 19] and characterize the
results of all matchups between i and j. For each of

these bipartite pitcher–batter networks, we also utilize
corresponding square adjacency matrices:

Â =

(

0 A

A
T

0

)

, Ŵ =

(

0 W

W
T

0

)

, M̂ =

(

0 −M

M
T

0

)

,

so that they are appropriately symmetric (Â and Ŵ) and

anti-symmetric (M̂). We construct and analyze each of
these representations for the single-season networks and
the aggregate (career) network that contains all pitcher–
batter interactions between 1954 and 2008.

To identify the changes in time in the organization of
baseball networks, we examine the graph properties of
single-season networks. The number of distinct oppo-
nents per player, given by the distribution of player de-
gree ki =

∑

j Âij , follows an exponential distribution for
a large range and then has an even faster decay in the
tail (see Fig. 2). (A recent study has observed power-
law behavior for other cumulative quantities in baseball
networks using different data sets and observation peri-
ods [20].) The mean values of the geodesic path length
between nodes and of the bipartite clustering coefficient
are only somewhat larger than what would be generated
by random assemblages (see Appendix A). However, as
with mutually-beneficial interactions in ecological net-
works [22], the mutually-antagonistic baseball matchup
networks exhibit nontrivial relationships between player
degree and player strength si =

∑

j Ŵij , which repre-

sents the total number of opponents of a player (count-
ing multiplicity) [1, 17]. As shown in Fig. 3A, the re-
lation between strength and degree is closely approxi-
mated by a power law s ∼ kα that starts in 1954 at
α ≈ 1.64 for pitchers and α ≈ 1.41 for batters but ap-
proaches α ≈ 1 for each by 2008. The 54-year trend
of a decreasing power-law exponent indicates that real-
life events such as the increase in the number of base-
ball teams through league expansion (e.g., in the 1960s,
1977, 1993, and 1998), reorganization (e.g., in 1994, to
three divisions in each league instead of two), interleague
play (in 1997), and unbalanced schedules (in 2001) have
modified the organizational and team-competition prop-
erties of the networks (also see relevant discussions in
Refs. [20, 21]). Fascinatingly, this long-term decreasing
trend in power-law exponent also seems to exhibit non-
punctuated behavior that does not have an obvious ex-
planation via known changes in baseball scheduling or
rules. Understanding the origins of this observation thus
remains an interesting open question.

An important property mediating the competition dy-
namics of mutualistic networks in ecology is nestedness

[9]. Although the definition of nestedness can vary, a net-
work is said to be nested when low-degree nodes interact
with proper subsets of the neighbors of high-degree nodes
[18] (see Fig. 1). To calculate the aggregate nestedness in
the binary matchup network A, we employed the nested-
ness metric based on overlap and decreasing fill (NODF)
[23], which takes values in the interval [0, 1], where 1
designates a perfectly-nested network (see Appendix A).C
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Figure 3B (black circles) shows that single-season base-
ball networks consistently have nestedness values of ap-
proximately 0.28. This value is slightly but consistently
higher than those in randomized versions of the networks
with similar distribution of interactions (red squares)
[18], which we also observe to decrease slightly in time.
In common with bipartite cooperative networks [8], this
confirms that nestedness is a significant feature of these
mutually-antagonistic networks.

Although nestedness is defined as a global character-
istic of the network, we can also calculate the individual
contribution of each node to the aggregate nestedness
[23]. Comparing node degrees and individual nestedness
(see Appendix A) before 1973, batters and pitchers col-
lapse onto separate curves (see Fig. 3C). Starting in 1973,
however, each of these groups of nodes splits into two
curves (see Fig. 3D), corresponding to players in the two
different leagues: the American League (AL) and the Na-
tional League (NL). This structural change presumably
resulted from the AL’s 1973 introduction of the desig-
nated hitter (DH), a batter who never fields but bats
in place of the team’s pitchers (see Fig. 1), apparently
causing the AL to become less nested due to the replace-
ment of low-degree batting pitchers with higher-degree
DHs. As we discuss below, this suggests that the net-
work position of a player might affect his own ranking
(while, of course, network position is strongly influenced
by a player’s longevity and thus by his performance).
We examined ecological mutualistic networks with simi-
lar aggregate nestedness values but found no correlation
between degree and individual nestedness in those exam-
ples.

III. BIASED RANDOM WALKERS

To compare the performance of players, we rank them
by analyzing biased random walkers on the bipartite
network M encoding the outcomes of all mutually-
antagonistic interactions between each player pair. Our
method generalizes the technique we previously used for
NCAA football teams [15, 16], allowing us to rank play-
ers in individual seasons and in the 1954–2008 career net-
work. It thereby yields a quantitative, conceptually-clear
method for ranking baseball players that takes a rather
different approach from existing sabermetric methods
used to project player performance. Such existing meth-
ods include DiamondMind (which uses Monte Carlo sim-
ulations), PECOTA (which uses historical players as a
benchmark), and CHONE (which uses regression mod-
els) [24, 25].

To describe the aggregate interaction Mij between
pitcher i and batter j, we need to quantify each possible
individual pitcher–batter outcome. For simplicity, we fo-
cus on the quantity runs to end of inning (RUE) [14],
which assigns a value to each possible plate-appearance
outcome (single, home run, strikeout, etc.) based on the
expected number of runs that a team would obtain be-

fore the end of that inning, independent of the situational
context (see Appendix B for specific values). Higher
numbers indicate larger degrees of success for the batting
team. For each season, we add the RUE from each plate
appearance of pitcher i versus batter j to obtain a cumu-
lative RUE for the pair. Note that any performance index
that assigns a value to a specific mutually-antagonistic in-
teraction can be used in place of RUE without changing
the rest of our ranking algorithm. We define the single-
season outcome element Mij by the cumulative extent to
which the batter’s outcome is better (Mij > 0) or worse
(Mij < 0) than the mean outcome over all pitcher–batter
matchups that season. When defining the career outcome
element Mij for 1954–2008, we account for the offensive
inflation in baseball’s modern era [13, 14] by summing
over individual seasons (i.e., we examine outcomes rela-
tive to mean outcomes on a per season basis).

We initiate our ranking methodology by considering
independent random walkers who each cast a single vote
for the player that they believe is the best. Each walker
occasionally changes its vote with a probability deter-
mined by considering the aggregate outcome of a single
pitcher–batter pairing, selected randomly from those in-
volving their favorite player, and by a parameter that
quantifies the bias of the walker to select the winner of
the accumulated outcome. A random walker that is con-
sidering the outcome described by this matchup is biased
towards but not required to choose the pitcher (batter)
as the better player if Mij < 0 (Mij > 0).

The expected rate of change of the number of votes
cast for each player in the random walk is quantified by a
homogeneous system of linear differential equations v

′ =
D · v, where

Dij =

{

Ŵij + rM̂ij , i 6= j

−si + r
∑

k M̂ik , i = j .
(1)

The long-time average fraction of walkers ṽj residing at
(i.e., voting for) player j is then found by solving the
linear algebraic system D·ṽ = 0, subject to an additional
constraint that

∑

j ṽj = 1. If the bias parameter r > 0,
then successful players will on average be ranked more
highly. For r < 0, the random walker votes will instead
tend toward the “loser” of individual matchups.

Equation (1) gives a general one-parameter system for
a biased walker with probabilities that are linear in RUE,
but the approach is easily generalized by using other
functional forms to map observed plate appearance out-
comes (in M) into selection probabilities. By restricting
our attention to a form that is linear in RUE, the in-
terpretation that the off-diagonal components of D cor-
respond to random walker rate coefficients requires that
these components remain non-negative, a preferable state
that leads to a number of beneficial properties in the
resulting matrix. For example, this allows us to apply
the Perron-Frobenius theorem, which guarantees the ex-
istence of an equilibrium ṽ with strictly positive entries
(and similarly guarantees the existence of positive solu-
tions in algorithms such as PageRank) [16, 17, 26, 27].C
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In practice, this requirement is equivalent in the baseball
networks to |r| . 0.7, so that the result of a home run in
a single plate-appearance matchup (i.e., the case in which
a batter faces a pitcher exactly once and hits a home run
in that appearance) maintains a small but non-negative
chance that a random walker will still select the pitcher.

Because the aggregate outcome of most pairings re-
mains close to the mean, the bias in the random walk is
small, and the rankings become essentially independent
of the bias parameter. The linear expansion in bias r
thereby yields a ranking with no remaining parameters
beyond the statistically-selected RUE values. This ex-
pansion is ṽ = v

(0) + rV + O(r2) . Generalizing the
similar expansion described in detail in Ref. [16], the
zeroth-order term results in a constant number of votes
per player. The additional contribution at first order is
given by the solution of a discrete Poisson equation on
the graph:

∑

j

LijVj =
4

n

∑

j

M̂ij , (2)

subject to the neutral charge constraint
∑

j Vj = 0. (By
analogy with electrostatics, we refer to Vj as the RUE
‘charge’ of node j.) In equation (2), n = P+B is the total

number of players, L = S − Ŵ is the graph Laplacian,
S is the diagonal matrix with elements sii =

∑

j Ŵij

(and sij = 0 for i 6= j). Accordingly, we restrict our
attention to the first-order ranking that is specified by V

and obtained using the solution of equation (2).
We tabulate this rank ordering separately for pitchers

and batters for both individual seasons and the career
network. We compare the results of the random walker
ranking to major baseball awards in Table I. We note
that the rankings are highly correlated with the underly-
ing RUE per plate appearance of each player (ρ ≈ .96 for
2008; we obtain similar correlation values for other sea-
sons), so that the top players in the rankings produced by
our method have a strong but imperfect correlation with
the lists produced by ranking players according to (suit-
ably normalized) raw RUE values. For instance, Todd
Helton, who is widely lauded by sabermetrics gurus as
a significantly underrated player even when taking into
account the likely inflation of his raw statistics from his
home ballpark (Coors Field, which highly-ranked batter
Larry Walker also called home for several seasons) [28],
ranks third among all batters in the career network in
RUE values, which we consider in each year relative to
the annual average (i.e., before any network structure is
taken into account)[44]. One similarly finds a strong cor-
relation between rankings with and without network in-
formation using any other sabermetric quantity that one
might consider in place of RUE. That is, although the dif-
ferences in rank ordering that result from considering a
player’s position in the network are typically small, they
are still present: it matters which players one has faced,
and that is codified by the network. For example, the dif-
ferences between random walker rankings and raw RUE

rankings appear to appropriately capture the caliber of
opponents (e.g., pitchers from teams with relatively ane-
mic offenses—such as the 2008 Nationals, Astros, and
Reds—have a higher ranking in the random walker rank-
ing, reflecting that they never had the good fortune of
going up against their own teams’ batters). We also com-
pared our rankings with a leading contender in baseball
analysis, ESPN’s MLB Player Ratings, which combines
ratings from ESPN, Elias, Inside Edge, and The Base-

ball Encyclopedia [29]. Of the top 99 players for 2008
who are listed in the Player Ratings, 12 did not meet
our threshold for plate appearances. Comparing the ran-
dom walker results for the remaining 87 players with the
Player Ratings yields a correlation of ρ ≈ .5601. We thus
proceed to study the random walker results for the ca-
reer ranking both with confidence that it correlates with
methods that are currently used for single-season analy-
sis and caution that the ranking details do not capture all
effects according to current best practices in quantitative
baseball analysis [30].

The career ranking allows credible comparisons be-
tween players from different eras. Considering the rank-
ings restricted to individuals who played in at least 10
seasons (i.e., HOF-eligible players) during the time cap-
sulated in the employed data set, we find that Barry
Bonds (batter), Pedro Martinez (starting pitcher), and
Mariano Rivera (relief pitcher) are the best players in
their respective categories from 1954 to 2008. We show
additional rankings in Table II. Returning to some of our
motivating examples, we note that Albert Belle (29th
among batters) is ranked much higher than Jim Rice
(115th), suggesting that Belle’s hitting performance per-
haps merits HOF membership more than that of Rice.
Similarly, Bert Blyleven ranks higher not only than cur-
rent HOF competitors such as Jack Morris and Tommy
John but also higher than three HOF pitchers with over
300 wins (Steve Carlton, Phil Niekro, and Don Sutton),
which is one traditional benchmark for selecting elite
pitchers. Direct comparison with other rank orderings
of players across different eras would necessitate restric-
tion to sufficiently similar time periods and is beyond the
scope of the present study.

IV. LINKING STRUCTURE TO
PERFORMANCE

As previously suggested, the network architecture
should have important effects on the performance of
players, as the quality of head-to-head competition is
affected. In particular, central players in the network
might have a systematic advantage in the rankings rel-
ative to those who are not as well connected. Such
structurally-important players (see Table II for exam-
ples), who have high values for both betweenness cen-
trality and nestedness, have had long—and usually ex-
tremely successful—careers, so it is of significant interest
(yet difficult) to gauge the coupled effects on their rankC
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ordering from statistical success versus structural role in
the network. With this in mind, we found almost no
correlation (ρ ≈ 0.001) between a player’s position—i.e.,
individual nestedness and betweenness—and his success
measured by the fraction of votes received. Accordingly,
network position by itself (i.e., without also taking per-
formance into account) does not seem to give any sys-
tematic advantage in a player’s ranking.

To investigate this further, we examine the correlation
between the sensitivity of rankings and changes in out-
comes in individual pitcher–batter pairs. We do this by
calculating the Moore-Penrose pseudo-inverse L

+ of the
graph Laplacian. Consider changing the outcome of the
single edge that corresponds to the aggregate matchup
between players i and j. If we increase the former’s ag-
gregate RUE by a unit amount at the expense of the
latter, then the total change in votes V is proportional
to the difference between the ith and jth columns of L

+.
This difference yields a node-centric measure of the sensi-
tivities of rankings to individual performances. The con-
straint

∑

i L+
ij = 0 implies that L+

ii (the diagonal element

of the pseudo-inverse of the graph Laplacian), which de-
scribes the direct control that player i has on his own
ranking, is equal and opposite to the total change his
performance directly imposes on the rest of the network.
Additionally, as illustrated in Fig. 4A, the quantity L+

ii

is closely related to the total RMS change in votes across
the network due to the performance of player i. In par-
ticular, consider a player i on the right part of this figure.
Such a player has low strength si and few appearances,
and the largest value by far of the ith column of L+ is
L+

ii ≈ 1/si (see the discussion below for more information
on the relation to si). For instance, at the extreme right
edge of the diagonal of L+ for 2008, one finds Philadel-
phia Phillies middle reliever Geoff Geary (who we label
as node g), who made an out in his only plate appearance
and gives a diagonal entry of L+

gg ≈ 1.0656. Adding to
Geary’s charge in the network raises not only his value
but also those of any player that he faced. However,
this latter value is only about 0.0662. Hence, when we
take the square root of the sum of squares, we obtain
a value that is essentially indistinguishable from 1.0656.
The asymptote on the right of Fig. 4A is thus the line
y = x.

Note that the element L+
ii is related to the mean of

the commute distances between nodes i and j (averaging
over all j) [31]. Given the constraint discussed above,
the sum of the commute distances tij = L+

ii + L+
jj − 2L+

ij

over j yields a linear function of L+
ii . Consequently, L+

ii

provides a node-centric measure of the average distance
from node i to the rest of the network. The notion of
average commute distance is reminiscent of the measures
known as information centrality [32] and random walk
centrality [33] (though the results of applying the differ-
ent measures can still be quite different). The negative
relationship between L+

ii and both betweenness central-
ity and nestedness, which we show in Fig. 5, thus yields
a corresponding negative relationship between the mean

commute distance and the betweenness and nestedness
of a player. A player who is highly embedded in the
network (i.e., one with high individual nestedness) has a
small mean commute distance to the rest of the network,
and the ranking of that player is not very sensitive to the
outcome of a single matchup. In contrast, a player who is
in the periphery of the network (i.e., one with low individ-
ual nestedness) typically has a very large mean commute
distance to other portions of the graph, and his place in
the rank ordering is consequently much more sensitive to
the results of his individual matchups [45]. This suggests
that players in the AL tend on average to be very slightly
more prone to changes in their own rankings than players
in the NL (see Fig. 3D).

Remarkably, we can make these general notions much
more precise, as L+

ii ≈ s−1
i , where we recall that si

is the strength of node i (see Fig. 4B). Some similar-
ities between these quantities is reasonably expected.
(Consider, e.g., the role of relaxation times in a similar
relationship—which can be quantified via an eigenvalue
analysis—with random walk centrality in Ref. [33].) The
accuracy of this simple relationship belies a stunning or-
ganizational principle of the baseball matchup networks:
The global quantity of average commute distance of a
node is well-approximated by its strength, a simple lo-
cal quantity. That is, in the appropriate perturbation
analysis to approximate the Laplacian pseudo-inverse,
the higher-order terms essentially cancel out, contribut-
ing little beyond the (zeroth order) local contribution.
We also found a rougher relationship for nestedness and
betweenness (see Fig. 6).

These results have two interesting implications. First,
they reveal that the success of well-connected players de-
pends fundamentally on a strong aggregate performance
rather than simply on their position in the network. Sec-
ond, they imply that neophyte players would need to
face well-connected players if they want to establish a
stronger connection to the network and a ranking that is
less vulnerable to individual matchups. Similarly, recent
research on mutualistic networks in ecology has found
that neophyte species experience lower competition pres-
sures by linking to well-connected species [9]. Our find-
ings on baseball player rankings suggest the possibil-
ity that one might find similar competition patterns in
mutually-antagonistic interactions in ecological and so-
cial networks.

V. CONCLUSIONS

Drawing on ideas from network science and ecology,
we have analyzed the structure and time-evolution of
mutually-antagonistic interaction networks in baseball.
We considered a simple ranking system based on biased
random walks on the graphs and used it to compare
player performance in individual seasons and across en-
tire careers. We emphasize that our ranking methodology
is overly simplistic, as there are several considerationsC
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that one might use to improve it (see, e.g., Appendix B)
while maintaining a network framework that accounts for
which players each player has faced. We also examined
how the player rankings and their sensitivities depend on
node-centric network characteristics.

We expect that similar considerations might be useful
for developing a better understanding of the interplay be-
tween structure and function in a broad class of competi-
tive networks, such as those formed by antigen–antibody
interactions, species competition for resources, and com-
pany competition for consumers. Given the motivation
from ecology, we are optimistic that this might lead to
interesting ecological insights, compensating for the dif-
ficulty in collecting data on the regulatory dynamics of
mutually-antagonistic networks in ecology—such as the
ones formed by parasites and free-living species [11]—or
assessing the potential performance of invasive species
from different environments [34].
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Appendix A: Quantities for Bipartite Networks

In this appendix, we review some important quantities
for bipartite networks and discuss their values for the
baseball matchup networks.

A clustering coefficient for bipartite networks can be
defined by [35]

C4,mn(i) =
qimn

(km − ηimn) + (kn − ηimn) + qimn

, (A1)

where qimn is the number of complete squares involving
nodes i, m, and n; the quantity ηimn = 1 + qimn en-
forces the requirement in bipartite graphs that there are
no links between nodes of the same population; and we
recall that ki is the degree of node i. Hence, the nu-
merator in (A1) gives the actual number of squares and

the denominator gives the maximum number of possible
squares. For the single-sason baseball networks, we cal-
culate the ratio rc = 〈C4〉/〈C4r〉 between the mean clus-
tering coefficient 〈C4〉 summed over all nodes i and the
mean clustering coefficient 〈C4r〉 generated by a random-
ization of the network that preserves the original degree
distribution [36]. We found that baseball networks have
average clustering coefficients that are just above that of
random networks. Interestingly, the ratio rc decreases
gradually (and almost monotonically from one season to
the next) from rc ≈ 2.5 in 1954 to rc ≈ 1.3 in 2008.

The geodesic betweenness centrality of nodes over the
unweighted network Â is defined by [1, 37]

b(i) =
∑

j,k

∆j,k(i)

dj,k

, (A2)

where ∆j,k(i) is the number of shortest paths between
players j and k that pass through player i and dj,k is
the total number of shortest paths between players j and
k. For the single-season baseball networks, we calculate
the ratio rb = 〈b〉/〈br〉 between the mean path length
〈b〉 summed over all nodes i and the mean path length
〈br〉 generated by a randomization of the network that
preserves the degree distribution [36]. As with cluster-
ing coefficients, we found that the mean path lengths of
baseball networks are only slightly larger than those of
random networks, finding in particular that rb ∈ (1, 3)
[38].

Nestedness is an important concept that has been ap-
plied to ecological communities, in which species present
in sites with low biodiversity are also present in sites
with high biodiversity [39]. Although the general notion
of nestedness can vary, the concept has nonetheless been
employed quite successfully in the analysis of ecological
networks [18]. In a nested network, interactions between
two classes of nodes (e.g., plants and animals) are ar-
ranged so that low-degree nodes interact with proper sub-
sets of the interactions of high-degree nodes. A nested
network contains not only a core of high-degree nodes
that interact with each other but also an important set of
asymmetric links (i.e., connections between high-degree
and low-degree nodes). The importance of nestedness
measures is twofold: (1) they give a sense of network or-
ganization; and (2) they have significant implications for
the stability and robustness of ecological networks [9, 18].

To avoid biases in nestedness based on network size
(i.e., the number of nodes), degree distribution, and other
structural properties, we employ the nestedness calcu-
lations introduced recently in Ref. [18]. The aggregate
nestedness is given by [23]

NODF =

∑

i,j Ni,j +
∑

l,m Nl,m

([P (P − 1)/2] + [B(B − 1)/2])
. (A3)

For every pair of pitchers (i and j), the quantity Ni,j

is equal to 0 if ki ≤ kj and is equal to the fraction of
common opponents if ki > kj . We also define a similarC
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quantity for every pair of batters (l and m). The nest-
edness metric takes values in the interval [0, 1], where 1
designates a perfectly-nested network and 0 indicates a
network with no nestedness.

The NODF version of nestedness also allows one to cal-
culate the individual nestedness of each pitcher (column)
or batter (row) using the equation

z(i) =
∑

j

Ni,j/(T − 1) , (A4)

where T = P (total number of columns) for pitchers,
T = B (total number of rows) for batters, and Ni,j is
calculated as above. In this way, the individual nest-
edness metric takes values in the interval [0, 1], where 1
designates a perfectly-nested individual and 0 indicates
an individual with no nestedness.

The null model used to compare the empirical nested-
ness is given by [18]

q(i, j) =
ki

2B
+

kj

2P
, (A5)

where qi,j is the occupation probability of an interaction
between node i and node j, and we recall that B and
P are, respectively, the total number of nodes j (bat-
ters) and nodes i (pitchers) in the network. In a bi-
partite network, j and i represent two different types of
nodes, so qi,j is the mean of the occupation probabilities
of the row and column. Recent studies have shown that
model-generated nestedness values extracted from this
null model lower the probability of incorrectly determin-
ing an empirical nested structure to be significant [23].
For baseball networks, we calculated the standard error—
given by Z = (NODF − 〈NODF 〉)/σ, where NODF
corresponds to the nestedness values of the empirical net-
works and 〈NODF 〉 and σ are, respectively, the average
and standard deviations of nestedness values of random
replicates generated by the null model. For the base-
ball networks, we found that Z > 3 in all seasons (see
Fig. 3B).

Appendix B: Definition of Runs to End of Inning
(RUE)

To quantify the outcome of each plate appearance,
we used the sabermetric quantity runs to end of inning

(RUE) [14], which assigns a value to each of the possible
outcomes in a plate appearance based on the expected
number of runs a team would obtain before the end of
that inning following that event, independent of game
context. (RUE can also be adjusted by subtracting the
initial run state [30].) Higher numbers indicate larger de-
grees of success for the batting team. The batter events

(and their associated numerical RUE values) are as fol-
lows: generic out (0.240), strikeout (0.207), walk (0.845),
hit by pitch (0.969), interference (1.132), fielder’s choice
(0.240), single (1.025), double (1.311), triple (1.616), and
home run (1.942).

Note that we are ignoring events such as passed balls
and stolen bases that can occur in addition to the above
outcomes in a given plate appearance. This might lead
to some undervaluing in the ranking for a small num-
ber of position players (such as Tim Raines) that rely
on stolen bases. We also considered the metric known
as weighted on base average (wOBA) [40] and note that
any metric that assigns a value to a specific plate appear-
ance can be used in place of RUE without changing the
rest of our ranking algorithm. This includes, in partic-
ular, popular sabermetric quantities such as win shares
and value over replacement player (VORP) [12, 14]. One
can also incorporate ideas such as ballpark effects into
the metric employed at this stage of the algorithm with-
out changing any other part of the method. Although
it would make the methodology more complicated (in
contrast to our goals), it is also possible to generalize our
algorithm to include more subtle effects such as estimates
for when player performance peaks and how it declines
over a long career. Some of the active players in the data
set have not yet entered a declining phase in their careers
and might have higher rankings now than they will when
their careers are over. We expect that the relatively high
rankings of modern players versus ones who retired long
ago might also result in part from the increased perfor-
mance discrepancy between the top players and average
players in the present era versus what used to be the case
and in part from performing well against the larger num-
ber of relatively poor players occupying rosters because
of expansion [41]. Finally, we note that batter–pitcher
matchups are not fully random but contain significant
correlations (e.g., in a given baseball game, the entire
lineup of one team has plate appearances against the
other team’s starting pitcher) that can be incorporated
to generalize the random walker process itself [30].

To include the outcome of players who did not have
many plate appearances without skewing their rankings
via small samples, we separately accumulated the re-
sults for all pitchers and batters with fewer than some
threshold number of plate appearances K into a single
“replacement pitcher” and “replacement batter” to rep-
resent these less prominent players. In the results pre-
sented in this paper, we used the threshold K = 500 for
both the single-season and career networks. Note that
similar thresholds exist when determining single-season
leadership in quantities such as batting average (which
requires 3.1 plate appearances per team game, yielding
502 in a 162-game season) and earned run average (1
inning per team game).
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1954 1958 1963
MVP (AL) Yogi Berra (11th) Jackie Jensen (8th) Elston Howard (20th)
MVP (NL) Willie Mays (2nd) Ernie Banks (6th) Sandy Koufax (1st)
Cy Young (AL) N/A Bob Turley (14th) Sandy Koufax (1st)
Cy Young (NL) N/A Bob Turley (14th) Sandy Koufax (1st)

1968 1973 1978
MVP (AL) Denny McLain (4th) Reggie Jackson (11th) Jim Rice (3rd)
MVP (NL) Bob Gibson (1st) Pete Rose (6th) Dave Parker (1st)
Cy Young (AL) Denny McLain (4th) Jim Palmer (13th) Ron Guidry (1st)
Cy Young (NL) Bob Gibson (1st) Tom Seaver (1st) Gaylord Perry (30th)

1983 1988 1993
MVP (AL) Cal Ripken Jr. (11th) Jose Canseco (3rd) Frank Thomas (3rd)
MVP (NL) Dale Murphy (3rd) Kirk Gibson (17th) Barry Bonds (1st)
Cy Young (AL) LaMarr Hoyt (21st) Frank Viola (24th) Jack McDowell (17th)
Cy Young (NL) John Denny (14th) Orel Hershiser (7th) Greg Maddux (3rd)

1998 2003 2008
MVP (AL) Juan Gonzalez (18th) Alex Rodriguez (7th) Dustin Pedroia (23rd)
MVP (NL) Sammy Sosa (7th) Barry Bonds (1st) Albert Pujols (1st)
Cy Young (AL) Roger Clemens (3rd) Roy Halladay (15th) Cliff Lee (8th)
Cy Young (NL) Tom Glavine (10th) Eric Gagne (8th) Tim Lincecum (1st)

TABLE I: Single-Season Awards and Random Walker Rankings. We show the MVP and CY Young award winners for various
years from 1954 to 2008. In parentheses, we give the ranking of the player within his own category (pitcher or batter) that we
obtained using our random walker ranking system applied to the corresponding baseball season. For most of the seasons, there
is reasonable agreement between award winners and their random walker ranking considering that the ranking only considers
batter events, thus ignoring other ways in which players contribute. (Note that the Cy Young award was awarded to a single
pitcher—rather than one from each league—until 1967.)

Btw(P) N(P) R(RP) R(SP) Btw(B) N(B) R(B)
Nolan Ryan Jamie Moyer Mariano Rivera Pedro Martinez Julio Franco Rickey Henderson Barry Bonds
Jim Kaat Roger Clemens Billy Wagner Roger Clemens Rickey Henderson Barry Bonds Todd Helton
Tommy John Greg Maddux Troy Percival Roy Halladay Carl Yastrzemski Steve Finley Mickey Mantle
Dennis Eckersley Mike Morgan Trevor Hoffman Curt Schilling Hank Aaron Craig Biggio Manny Ramirez
Jamie Moyer Randy Johnson Tom Henke Sandy Koufax Pete Rose Gary Sheffield Frank Thomas
Greg Maddux David Wells B. J. Ryan Randy Johnson Tony Perez Ken Griffey Jr. Willie Mays
Charlie Hough Kenny Rogers Armando Benitez John Smoltz Joe Morgan Luis Gonzalez Mark McGwire
Don Sutton Terry Mulholland John Wetteland Mike Mussina Dave Winfield Julio Franco Alex Rodriguez
Phil Niekro Jose Mesa Keith Foulke J. R. Richard Ken Griffey Jr. Jeff Kent Larry Walker
Roger Clemens Tom Glavine Rob Nen Greg Maddux Al Kaline Omar Vizquel Vladimir Guerrero

TABLE II: Player Rankings. Top 10 pitchers (P) and batters (B) according to geodesic node betweenness (Btw), nestedness
(N), and random walker ranking (R). Pitchers are divided into relief pitchers (RP) and starting pitchers (SP). In accordance
with HOF eligibility, this table only includes players who played at least 10 seasons between 1954 and 2008. The random walker
ranking values for batters, as obtained from equation (2), are (in units of 10−5):: Bonds ≈ 9.22, Helton ≈ 7.94, Mantle ≈ 7.79,
Ramirez ≈ 7.52, Thomas ≈ 7.15, Mays ≈ 6.90, McGwire ≈ 6.88, Rodriguez ≈ 6.86, Walker ≈ 6.85, and Guerrero ≈ 6.82. Note
that if we consider all players with careers of at least 10 seasons, no matter how many of those seasons occurred between 1954
and 2008, the only change is that Ted Williams becomes the highest-ranking batter. If we consider all players with at least 8
seasons, the only additional change is that Albert Pujols is ranked just behind Barry Bonds.
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FIG. 1: Bipartite Baseball Networks. (A) A subset of the bipartite interactions between pitchers (left column) and batters
(right column) during the 1989 baseball season. The area of each circle is determined by the node degree (i.e., how many
different opponents were faced). Each line indicates that a given pitcher faced a given batter, and the darkness of each line is
proportional to the number of plate appearances that occurred (i.e., the node strength). (B) The matrix encoding the complete
set of bipartite interactions from 1989, with pitchers (columns) and batters (rows) arranged from the lowest to the highest
node degree. An element of the matrix is black if that particular pitcher and batter faced each other and white if they did not.
Observe the presence of a core of high-degree players that are heavily connected to each other (top right corner), an important
presence of asymmetric interactions (i.e., high-degree players connected to low-degree players), and a dearth of connections
between low-degree players (bottom left corner), which are all characteristics of nested networks [18]. Some of the batters are
actually pitchers (e.g., Mitch Williams), as National League pitchers (and, since 1997, also American League pitchers) have a
chance to bat and face a small number of pitchers while at the plate.
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FIG. 2: [Color online] Cumulative Degree Distribution. Semi-log plot of the cumulative degree distribution Pcum(k) for pitchers
and batters in the career (1954–2008) network. The dashed line correspond to a theoretical exponential distribution.
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FIG. 3: [Color online] Time Evolution and Summary Statistics of the Baseball Networks. Panel A shows the relation between
player degree k and player strength s from 1954 to 2008. The vertical axis gives the value of the exponent α in the power-law
relationship s ∼ kα (see the discussion in the main text), where we observe that α tends to decrease as a function of time.
Shuffling the strengths in the network while keeping the player degrees fixed yields a power-law relationship with α ≈ 1 for all
years. Blue circles denote pitchers and gray crosses denote batters. Each error bar corresponds to one standard deviation. The
inset shows on a log-log scale the relationship between degree k and strength s for the 2008 season. Panel B shows the time
evolution of the network’s nestedness (which we defined using the NODF metric [23]). Black circles and red squares represent,
respectively, the values for the original data and those for the standard null model II [18]. Each error bar again corresponds to
one standard deviation. Panels C and D show, respectively, the relationship between node degree and individual nestedness
for the 1972 and 1973 networks. For comparison purposes, the degree of pitchers and batters are respectively scaled by a
multiplicative factor of P/l and B/l, where P is the number of pitchers, B is the number of batters, and l is the number of
undirected edges in the network. In 1973, the American League introduced the designated hitter rule, which caused a significant
change in the structure of all subsequent single-season networks (including that one). Between 1954 and 1972, pitchers and
batters each collapse onto a single curve. From 1973 to 2008, however, pitchers and batters each yield two distinct curves,
revealing a division between the American league (bottom) and National League (top).
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FIG. 4: [Color online] Network Quantities versus Graph Laplacian. We plot the diagonal elements L+

ii
of the Moore-Penrose

pseudo-inverse of the graph Laplacian of the 2008 baseball network versus (A) the root-mean-squared (RMS) change of votes
across the network due to the RUE ‘charge’ at each node and (B) node strength. In each case, we use logarithmic coordinates on
both axes. In this network, we keep track of all players regardless of number of appearances. The plateau that we observe in the
left of panel A is unsurprising, as it corresponds to a bevy of high-strength players with a large number of interconnections—i.e.,
what seems to be a core structure in the nested network—so the total RMS effects appear to be independent of the increase in
charge on any particular core player. We discuss the asymptotic behavior on the right in the main text and note the L+

ii
≈ s−1

i

relationship in panel B. Note that we observe similar properties in the other seasons.
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FIG. 5: [Color online] Betweenness and Nestedness versus Graph Laplacian. We plot the diagonal elements of the Moore-
Penrose pseudo-inverse of the graph Laplacian of the 2008 baseball network versus (A) node betweenness and (B) individual
nestedness. In this network, we keep track of all players regardless of number of appearances. The two sets of data in Panel B
reveal two subsets of the data (namely, batters and pitchers). Note that we observe similar properties in the other seasons.
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FIG. 6: [Color online] Degree, Strength, Betweenness, and Nestedness. We show a log-log plot of (A) player degree k versus
betweenness centrality and (B) degree versus individual nestedness in the multi-season career network. The insets show the
analogous relationships obtained by replacing degree with strength s. Pitchers are shown by blue dots and batters are shown
by gray crosses. Pitchers with betweenness b ≈ 2 × 10−4 and low degree tend to be position players who made a few pitching
appearances (e.g., Keith Osik), pitchers with short careers (e.g., Wascar Serrano), or recent pitchers with few Major League
appearances (e.g., John Van Beschoten, who has split time between the Major Leagues and the Minor Leagues since 2004).
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